REPLACEMENT OF Mg²⁺ BY POLYAMINES IN THE AMINOACYLATION OF tRNA FROM PHASEOLUS

PHILLIPE L. JANSSENS DE VAREBEKE

Laboratoire de Cytogénétique, Institut de Botanique, Place de la Croix du Sud, 4. 1348- Louvain-la-Neuve, Belgium

(Revised Received 1 April 1975)

Key Word Index—*Phaseolus vulgaris*; Leguminosae; runner bean; *t*RNA; aminoacyl-*t*RNA-synthetases; polyamines; spermine; spermidine; putrescine.

Abstract—The ability of putrescine, spermidine and spermine to replace Mg^{2+} ions in the charging reaction of tRNA was estimated for seventeen amino acids. The polyamines promoted only the transfer reaction in the case of Leu, Ile, Val, Tyr and Arg. A synergistic effect was observed when spermine was added to a suboptimal concentration of Mg^{2+} (charging at only 5% of the optimal level). This synergistic effect was not observed for Ala, Asp-NH₂, His, Lys and Ser. Kinetic studies showed a slower aminoacylation rate in those experiments when spermine and Mg^{2+} (at 5% of the Mg^{2+} optimal concn) were used together than with Mg^{2+} (at the optimal concn) alone.

INTRODUCTION

Cohen [1] has pointed out the effects of polyamines on growth and biosynthetic processes. Aminoacyl-tRNA formation was stimulated by the three main polyamines (putrescine, spermidine and spermine) as effectively as by Mg^{2+} in E. coli [2]. In the presence of spermidine and a suboptimal concentration of Mg2+, fixation of formylmethionine and Val in E. coli represented 80-85% of that obtained in presence of Mg²⁺ alone, at the optimal concentration [3]. In E. coli. the amino acid hydroxamate formation was not stimulated by spermine and there was no enzyme-aminoacyl-AMP complex formation in the first reaction of amino acid activation [4]. In this paper, we have tried to see if polyamines can replace Mg²⁺ in vitro for the aminoacylation of the tRNA of Phaseolus vulgaris.

RESULTS

Enzyme characterization

Optimal enzyme concentration. The amino acids could be classified in four groups according to the protein concentration necessary to reach

maximum charging: His, Lys, Phe and Pro needed 0·2 mg of protein per ml of medium; Arg, Leu, Tyr and Val needed 0·4 mg; Ala, Asp—NH₂, Asp and Thr needed 0·8 mg and Glu, Gly, Ile and Ser needed 1·5 mg. When the protein concentration was greater than 0·2 mg/ml, a decreased incorporation was observed for lysyl-tRNA-synthetase.

Optimal Mg^{2+}/ATP ratios. The attachment of the 17 amino acids to the tRNA was studied using the corresponding enzymatic preparation, maintaining the ATP at 1 μ mol in 0·1 ml and varying the Mg^{2+} from 0 to 8 μ mol. The optimal Mg^{2+}/ATP ratio varied between 1 and 2·5. Leucyl-tRNA-synthetase and valyl-tRNA-synthetases were sensitive to high levels of Mg^{2+} ions, the inhibitions observed at a Mg^{2+}/ATP ratio of 8 were 50 and 80% respectively (Fig. 1).

Effect of various polyamines on aminoacyl-tRNA formation

Polyamines can only replace Mg²⁺ for 5 amino acids, Leu, Ile, Val, Arg and Tyr [5], and the extent of charging observed was respectively 60, 50, 30, 25 and 27% of the optimal charge obtained

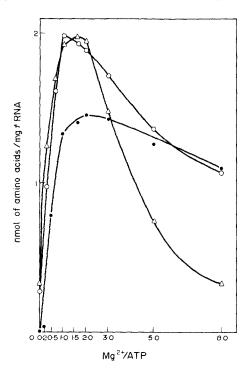


Fig. 1. Effect of increasing Mg²+/ATP ratios on aminoacylation of *Phaseolus vulgaris t*RNA hypocotyls by homologous enzymes: (○) Leucine, (△) Valine, (●) Phenylalanine.

with Mg²⁺. The polyamine concentration necessary for maximal rates were much lower than those needed with Mg²⁺. The optimum concentration of spermine, spermidine and putrescine were 0·3–0·5, 2 and 5 mM, respectively.

Effect of spermine on aminoacyl-tRNA formation at different Mg^{2+} concentrations

As it appeared that in most cases spermine alone was not able to replace Mg²⁺, this amine was combined with various concentrations of Mg²⁺. A synergistic effect has been shown in rat liver for threonine, especially when a suboptimal concentration of Mg²⁺ was added to spermine [6]. The activation was up to 23 times at 1 mM Mg²⁺ and 1 mM spermine. For the amino acids Arg, Asp, Gly, Ile, Leu, Met, Phe, Thr, Tyr and Val, a synergistic effect was also observed in our system, particularly when a suboptimal concentration of Mg²⁺ (5% of the optimal level) was added to 0.5 mM spermine (Fig. 2). On the other hand, no effect was observed for Ala, Asp–NH₂, His, Lys, Pro and Ser. All incubations were made

at 30° for 30 min. The importance of the synergistic effect was different for all the amino acids but it was always greatest at low Mg²⁺ concentrations.

Kinetic studies of the synergistic effect

Kinetic studies were made for those amino acids for which a synergistic effect was observed. These experiments were made with spermine at 0.5 mM and the suboptimal Mg²⁺ concentration giving the greatest effect. The plateau was only reached after 60 min. The activation was up to 3.5 times the level reached with the suboptimal Mg²⁺ concentration and was 80–90% of the optimal extent of charge. The reaction was slower than in the optimal conditions where the plateau was attained after 10 min.

DISCUSSION

Although in *E. coli*, polyamines alone seem able to replace Mg²⁺ [7], in *Phaseolus*, they could not replace Mg²⁺ with the same success. Since *in vivo* polyamines and Mg²⁺ are present together in plants [8–10], we tried to see if there was a synergistic effect of spermine and Mg²⁺. For many amino acids (Arg, Asp, Gly, Ile, Leu, Met, Phe, Thr, Tyr and Val) an effect was observed, but for Ala, Asp–NH₂, His, Lys, Pro and Ser no effect

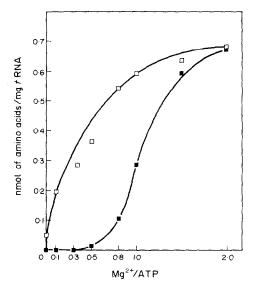


Fig. 2. Effect of spermine on methionyl-tRNA formation at different Mg²⁺ concentrations; (□) with 0.5 mM spermine, (□) without spermine.

was detected. The activation by spermine is more noticeable at low Mg²⁺ concentrations in the formation of aminoacyl-tRNA. These results suggest that small variations of Mg²⁺ concentration can have a dramatic effect on the ratios of the exchange vs transfer rates of aminoacyl-tRNA-synthetases when the polyamine effect is studied.

EXPERIMENTAL

Radioactive amino acids obtained from the Radiochemical Center, Amersham, and from the IRE Mol (Belgium) were adjusted to a sp act of 20 mCi/mmol.

Determination of proteins and tRNA concentrations. The spectrophotometric method of Ref. [11] was used to determine the protein concn. To determine the tRNA concn, the method of Ref. [12] (1 mg of tRNA in H_2O equivalent to an E value of 24 at 260 nm) was used.

Enzymes and tRNA preparations. To prevent phenolic oxidation. 0.4 M borate buffer pH 7.6 was used for extraction of aminoacyl-tRNA-synthetases [13,14]. Extraction of tRNA from Phaseolus vulgaris was made according to Ref. [15]. tRNA was extracted from 3-day-old, dark-grown hypocotyls and these were also used from preparation of aminoacyltRNA-synthetases. After the deproteinization step, the tRNA was purified by precipitation of high MW rRNA in M NaCl for 6 hr. After centrifugation tRNA was precipitated for 18 hr in cold EtOH and then purified on a DEAE-cellulose column. The tRNA was deacylated in Tris-HCl buffer pH 8.5 for 90 min at 37°. To remove bound Mg²⁺ from the tRNA preparation, the latter was dialyzed successively against a soln containing 1 mM EDTA and 2 M NaCl, against a soln containing 1 mM EDTA, and finally against H₂O. From 100 g of fresh bean hypocotyls, 10-15 mg of tRNA was obtained.

Standard assay for aminoacyl-tRNA formation. The standard reaction mixture (0·1 ml) for the aninoacylation of tRNA contained the following: 50 µmol cacodylate-HCl buffer pH 7·4,

 $10 \mu g$ bovine serum albumin, $10 \mu mol$ neutralized ATP, $3 \mu mol$ KCl, $0.1 \mu mol$ 2-mercaptoethanol, $16-25 \mu g tRNA$, 10 nmol 1- 14 C-aminoacids. The enzyme soln, Mg(OAc)₂, spermine, spermidine, putrescine were added at concns indicated. After incubating the reaction mixture at 30° , aliquots ($80 \mu l$) of each reaction mixture were placed at intervals on a Whatman 3 MM paper disc (25 mm diam), washed $\times 3$ in 5% TCA for 10 min and $\times 3$ in EtOH. Discs were dried and counted in a liquid scintillation counter.

REFERENCES

- 1. Cohen, S. S. (1971) Introduction to the Polyamines. Prentice-Hall, Englewood Cliffs, New Jersey.
- Igarashi, K. and Takeda, Y. (1970) Biochim. Biophys. Acta 213, 240.
- Matsuzaki, K. and Takeda, Y. (1973) Biochim. Biophys. Acta 308, 339.
- 4. Takeda, Y. and Igarashi, K. (1970) Biken's J. 13, 395.
- 5. Janssens de Varebeke, P. L. (1974) Arch. Intern. Physiol. Biochim. 82, 13.
- Aoyama, H. and Chaimovich, H. (1973) Biochim. Biophys. Acta 309, 502.
- 7. Takeda, Y. and Igarashi, K. (1969) Biochem. Biophys. Res. Commun. 37, 917.
- 8. Smith, T. A. (1970) Annals N.Y. Acad. Sci. 171, 989.
- 9. Wang, L. C. (1972) Plant Physiol. 50, 152.
- Doctor, B. P., Fournier, M. and Thornsvard, Ch. (1970) Annals N.Y. Acad. Sci. 171, 863.
- Layne, E. (1957) Methods in Enzymology (Colowick, S. P. and Kaplan, N. O., eds.), Vol. III, p. 457. Academic Press, New York.
- von Ehrenstein, G. (1967) Methods in Enzymology (Colowick, S. P. and Kaplan, N. O., eds.), Vol. XII, p. 588. Academic Press, New York.
- 13. King, E. E. (1971) Phytochemistry 10, 2337.
- Cornelis, P. and de Patoul, M. C. (1973) Arch. Intern. Physiol. Biochim. 81, 854.
- Burkard, G., Guillemaut, P. and Weil, J. H. (1970) Biochim. Biophys. Acta 224, 184.